2002 Decadal Survey Large Satellites Panel
Progress to 2007 mid-term review and 2009 retrospective to new Satellites panel

Alfred McEwen
(chair)
Robert Pappalardo
(vice-chair)
Caitlin Griffith
Torrence Johnson
Krishan Khurana
William Moore

LSP focused on the Galilean satellites, Titan, Triton

A. McEwen
LSP Report to NAS
27 March 2007
Active Worlds and Extreme Environments

Scientific themes:

A) Origin and evolution of satellite systems
B) Origin and evolution of water-rich environments in icy satellites
C) Exploring organic-rich environments
D) Understanding dynamic planetary processes
Theme A: Origin and Evolution of Satellite Systems

Origins and orbital dynamics
Interiors
Surface chemistry
Geological processes
Atmospheric chemistry
Magnetospheric interactions
Theme A: Key Questions

How do conditions in proto-planetary nebula influence compositions, orbits, and sizes of resulting satellites?

How do factors such as size, composition, orbital evolution, and tidal heating influence differentiation and outgassing? (Why does only Titan have a thick atm.?)

To what extent are the surfaces of icy satellites coupled to their interiors (chemically and physically)?

How has the outer solar system impactor population evolved through time, and how is it different from the inner solar system?

What does the magnetic field of Ganymede tell us about its thermal evolution, and do other large satellites have intrinsic magnetic fields?
Theme A: Future Directions

Earth-based observations
 Orbital dynamics; activity monitoring

Remote sensing missions
 Surface processes; surface chemistry; interiors;
 atmospheric chemistry; magnetospheric interactions

Landed missions
 Surface characterization; geophysical studies

Theoretical studies
 Orbital dynamics; accretion; differentiation; heat
 transport; tidal deformation and dissipation
Theme B: Water-rich Environments in Icy Satellites

Interior models

Link to geologic processes

Link to surface chemistry and atmospheres

Magnetospheric interactions
Theme B: Key Questions

Can and does life exist in the internal ocean of an icy satellite?

What combination of size, energy sources, composition, and history produce long-lived internal oceans?

What is the distribution of internal water, in space and time?

What is the chemical composition of the water-rich phase, and does surface chemistry reflect interior ocean composition?
Theme B: Future Directions

Europa is a compelling target for detailed exploration

- Evidence for relatively shallow water
- Ocean-surface communication on some timescale
- Water may contact silicate mantle
- Youthful surface (active?)

Orbital science
Landed missions
Theoretical studies
Theme C: Exploring Organic-Rich Environments

Titan

- Interior
- Geological processes
- Surface chemistry & atmosphere
- Magnetospheric interactions

Other organic-rich satellites

- Iapetus
- Triton
Theme C: Key Questions

What is the chemistry, distribution, and cycling of organic materials on Titan?

Is Titan internally active, producing water-rich environments with potential habitability?

What is the current state and history of Titan’s surface?

What drives Titan's meteorology?

Has there been climate change on Titan?

Could Titan support life that does not require water?
Theme C: Future Directions

Cassini

What we expect to learn
What we don't expect to learn

Ground-based observations

Orbital science

Airborne and landed science
Theme D: Understanding Dynamic Planetary Processes

Io, Titan, Triton

- Interior
- Geological processes
- Surface chemistry & atmosphere
- Magnetospheric interactions

Europa, Ganymede, Enceladus also important targets for Theme D

A. McEwen LSP Retrospective for new 2009-10 Decadal Survey 24 August 2009
Theme D: Key Questions

What are the active interior processes and relationships to tidal heating, heat flow, and global patterns of volcanism and tectonism? (Does Io have a magma ocean?)

What are the currently active endogenic geologic processes (volcanism, tectonism, diapirism) and what can we learn about such processes from these active worlds? (What can Io tell us about ancient volcanism on terrestrial planets?)

What are the complex processes and interactions in the surfaces, and in volcanic or geyser-like plumes, atmospheres, exospheres, magnetospheres? (What can we learn about meteorology from Titan and Triton?)
Theme D: Future Directions

Earth-based observations
Orbital science
Landed (probe) science
Candidate Missions

High cost

- Europa Orbiter (with Jupiter system science)
 Tech: radiation-tolerant electronics
- Titan Explorer (with *in situ* organic chemistry lab)
 Tech: atmospheric mobility; analysis techniques for organics
 (We assumed this required a high-cost mission.)
- Europa Lander ("Pathfinder" or "Astrobiology Lander")
 Tech: lander; sample retrieval & analysis methods; planetary protection
- Neptune Orbiter
 Tech: advanced propulsion and aerocapture
- Uranus Orbiter

A. McEwen LSP Retrospective for new 2009-10 Decadal Survey 24 August 2009
Candidate Missions (cont.)

Medium cost

Io Observer

Inclined Jupiter orbit with polar passes of Io to minimize radiation dose and compatible with studies of magnetosphere, Jupiter's aurora, rings

Equatorial orbiter compatible with study of other satellites

No orbit found to be compatible with Giant Planet Panel top priority (deep Jupiter)

Ganymede Orbiter

Neptune Flyby
Observation and Measurement Objectives

Table 2 of report links key questions for each theme to measurement objectives, and ranks candidate missions.

Europa orbiter and landers, Titan Explorer, Neptune Orbiter, and Io Observer score high.

Neptune Orbiter (with many Triton flybys) far better than Neptune Flyby (more than snapshot; search for subsurface water via induced magnetic field).

Tendency to highly rank poorly-defined missions due to optimistic assumptions.
Highest-Priority Questions

Is there extant life in the outer Solar System? (Are we alone?)

How far towards life does organic chemistry proceed in extreme environments? (Where did we come from?)

How common are liquid layers within icy satellites?

How does tidal heating affect the evolution of worlds?
Europa exploration addresses science themes and highest priority questions

Themes A, B, D; maybe C

Three or four highest-priority questions

COMPLEX assigned "the future exploration of Europa a priority equal to that for the future exploration of Mars" (COMPLEX, 1999, A Science Strategy for the Exploration of Europa)

Ganymede or Callisto are not substitutes (less communication of water with surface or silicate core)
Europa Orbiter SDT Group 1 Objectives:

Determine the presence or absence of a subsurface ocean

Characterize the three-dimensional distribution of any subsurface liquid water and its overlying ice layers

Understand the formation of surface features, including sites of recent or current activity, and identify candidate landing sites for future lander missions
Europa Orbiter Science
Objectives Remain Top Priorities

Europa Orbiter SDT
Group 2 Objectives

- Characterize the surface composition, especially compounds of interest to prebiotic chemistry
- Map the distribution of important constituents on the surface
- Characterize the radiation environment in order to reduce the uncertainty for future missions, especially landers
LSP Recommendation: Europa Exploration

Europa Orbiter with Jupiter system science is strongly recommended next step

- EO Group 1 and 2 science objectives are compelling
- Orbiter is required to achieve all of these objectives
- Jupiter system science is critical context
- Drop-off lander is an attractive augmentation
 - But additional cost; planetary protection uncertainties

Orbiter should be followed by a lander

- Physical, chemical, and biological studies
Titan Next Step: Questions & Measurement Goals

How far has Titan's organic chemistry progressed?
- Stratospheric photochemistry
- Long-term chemical evolution at the surface, especially where exposed to water

How does Titan's liquid cycle manifest itself?
- State of surface liquids
- Geological activity
- Thermal profile, humidity, and stability
- Circulation

What is the state of Titan's interior?
- liquid water; exotic ices
Titan Next Step: Questions & Measurement Goals (cont.)

What is the origin and evolution of Titan's atmosphere?
- Nitrogen: atmospheric Ar content
- Methane: lakes or present geological activity?
- Atmosphere: old or new (crater record)

What causes Titan's super-rotating winds?
- Opacity structure of particles and gases
- Wind profiles, waves, and temperature fields
- Seasonal variations

What is Titan's geologic history?
- Context of other icy satellites

A. McEwen LSP Retrospective for new 2009-10 Decadal Survey
LSP Recommendation: Post-Cassini Titan Exploration

Titan Explorer is a vital Cassini-Huygens follow-up

- Analyze heterogeneous surface organic chemistry
- In situ studies of surface geology
- Atmospheric structure over latitude
- Examine liquid cycling & cloud formation

Several viable exploration concepts

- Lander, aerobot, helicopter?

 Didn’t consider a “splasher”

Titan exploration addresses 3 of 4 highest-priority questions and all 4 themes.

- Should be placed high in mission queue
- Await Cassini-Huygens results to choose the 'best' platform and mission scenario
LSP Recommendations: Science Priorities

Titan may prove to have a science priority equal to that of Europa

Exploration addresses science themes and highest-priority science questions

Exploration should proceed in a systematic stepped program

Io and Triton are also of high science priority
LSP Recommendation: Stepped Europa-Titan Exploration
LSP Recommendation: Io and Triton Exploration

Jupiter Orbiter with multiple Io fly-bys (#1 medium-cost mission)

Achieves goals at Io and other parts of Jupiter system

Neptune Orbiter with multiple Triton fly-bys

Achieves goals at Triton and other parts of Neptune system

Primitive Bodies panel recommended a Neptune/Triton flyby with Centaur or KBO flyby (#5 of medium-cost missions). LSP recommended Neptune Orbiter with multiple Triton flybys (#3 of high-cost missions).
LSP Mission Recommendations and Cost Categorization

High cost:
- Europa Orbiter (Groups 1&2; Jupiter system science)
- Titan Explorer (scenario TBD)
- Neptune Orbiter (multiple close Triton encounters)

Moderate cost:
- Io Observer
- Ganymede Orbiter (Both missions simply assumed to be moderate cost)

Low cost:
- Enhanced/extended Cassini
- Part of GSMT
 or other ELT
LSP Recommendation: Ground-Based Exploration

Ground-based observations are required to:

- Understand long-term seasonal response of Titan and Triton
- Observe sporadic & infrequent massive cloud systems on Titan
- Monitor active volcanism on Io

Large telescopes (10 meter GSMT) are necessary

- Light gathering capabilities needed for high spectral resolution compositional and Doppler information
- Spatial resolution needed to study variations in Io’s volcanic surface, Titan's clouds, Triton’s surface
Cassini/Huygens is a highly capable mission, the likes of which we may not see again for decades in the outer Solar System.

Nominal mission science analysis is not adequately funded.

Extended mission has great potential which should be fully exploited.

Adequate funding of Cassini is far more cost effective for science than any new mission.
New Technology Recommendations

1. Radiation-hard electronics (for Europa, Io)
2. Advanced telemetry and power (for all deep-space missions)
3. Atmospheric mobility (for Titan Explorer)
4. Compact organic chemistry lab (for Titan Explorer and Europa lander)
5. Planetary protection (for Europa lander)
6. In-situ age dating (for Titan Explorer and Europa Lander)
7. Advanced propulsion and aerocapture (for Neptune Orbiter)
We should have given more emphasis to deep space communication. Full Decadal report says:

In the area of spacecraft communications it is assumed that current development of Ka-band capability and antenna arrays will mature in the early years of this decade. The next most important step is development of optical communications for a major leap forward in communications bandwidth, particularly for video-rate communications from Mars and for advanced exploration in the outer solar system.

The assumption about maturation has proven false, and this is currently a major handicap to exploring the outer SS. Only single 34 m antennae are expected post-NH. X-band is required for contingency/safe modes in outer SS, so Ka is added cost and mass, not affordable to low/moderate cost missions. High-power TWTAs are difficult to accommodate due to power limits. New outer SS missions of low-moderate cost are left with little choice but to live with low data rates.

2002 Survey report did say good things about upgrading DSN on P. 379, but NASA didn’t follow this advice.
Far Future (20+ years)

Nuclear Electric Propulsion could enable:

- Sequential orbits of Callisto, Ganymede, and Europa
- Titan sample return
- NEP not needed for an orbiter around Europa

Decadal steering committee report more positive towards NEP
Although the technology recommendations above follow logically from our science and mission rankings, technologies may be developed for other reasons. For example the administration’s FY 2003 budget proposal includes funding for nuclear-electric propulsion. Once nuclear propulsion is developed, this capability would then open up new mission possibilities, such as a spacecraft that could sequentially orbit all three icy Galilean satellites. Why not postpone Europa Geophysical Explorer until nuclear electric propulsion is available? There are several good reasons not to postpone this important mission. First, nuclear electric propulsion is not expected to be ready for an actual mission for at least 10 years, and we consider Europa exploration too scientifically important to postpone for a decade. Second, an orbiter around Europa is far more important for our key objectives than orbiters around Callisto or Ganymede because the tides are much larger (i.e., measurable via altimetry) and because Europa’s ice shell is significantly thinner (permitting radar sounding).

Our warning went unheeded but we were right (JIMO just delayed a realistic mission).
Additional Recommendations

Extended missions

Maintain existing Earth-based telescopic programs

Data analysis / R&A

Infrastructure
Large Satellites Panel
Recommendations: Summary

Europa exploration should be among the highest mission priorities of the Decadal Survey Steering Committee.

Titan exploration may merit a science priority equal to that of Europa, but it is (or was) premature to define the 'best' Cassini-Huygens follow-on mission.

Io Observer (Jupiter orbit) and Neptune Orbiter (with many Triton flybys) should have high priorities in the mission queue.

Enhanced/extended Cassini and Earth-based telescopic programs are highly cost-effective and must be supported.
Progress Since 2002

Europa

Studies, no new start (Flagship missions given a “D” in final report)

JIMO was a setback

Technology development

Significant progress has been realized in low-power, low-mass and high-speed science instruments

Cassini

Ambitious extended mission plan with emphasis on Titan and Enceladus

CDAP

R&A and ground-based observing have continued
Recommendations LSP Might Make in 2007

1. Flagship Mission: Europa Orbiter
 + Plan ahead for Titan, Neptune Orbiter, Enceladus?

2. Open New Frontiers to Io, Ganymede, Enceladus

3. Support Cassini extended mission plan

4. Support R&A, ground-based observing
Additional Recommendations LSP might make in 2009

Study (and cost) NF-class missions to Titan, Enceladus, and Neptune/Triton along with Io and Ganymede

Study and cost potential Discovery+ missions to outer planets moons (as recently done with DSMCE)

Continue to address radioisotope power and other technologies

Don’t assume NASA will do sensible things (e.g., maintain DSN or mature new technologies like Ka-band for the outer SS)

Implement arrays of small antennae for X-band downlink and/or procedures for low-risk use of Ka and/or optical comm.

Support second Cassini extended mission
How to Improve LSP Process

More time for deliberations (and don’t have another 9/11)

Cost estimates

The higher the fidelity the better, but anything is better than the null set we had in 2002 (or is it?)

Greater emphasis on technology maintenance as well as new development

Greater consideration of mission concepts that contribute to the science of multiple subpanels and other Decadal groups like Astrophysics and Heliospheric/Space Physics.